

Definitions

- Neuroendocrine: High Grade or Low grade
- Carcinoid is low grade: WDNT
- In Pancreas : Islet cell carinoma
- In Lung: Further divided
 - Typical few mitoses, no necrosis
 - Aytpical 2 mitoses per 10 HPF

Primary site (Pt with met dz)	Median survival (months)	Described molecular abnormalities
Lung	13.1	Chr 11q, 3p loss
Stomach	8.7	Chr 11q, 18, X loss
Pancreas	31.0	Chr 11q deletion, karyotypic instability, MEN1
Small bowel	56.7	Chr 18 loss, 16q loss
Appendix/cecum	42.0	Chr 18 loss, 16q loss
Colon/rectum	8.6	NRP-2 loss

Outline

- 1. Presentation
- 2. Diagnostic Work up and Follow
- 3. Role of Surgery/ RFA/ Cryro
- 4. Role of Peptide Receptor Radionuclide Therapy
- 5. Role of Biologics and Somatostatin Analogs
- 6. Role of Systemic Therapy
 - Chemotherapy and Novel drugs

Outline

• 1. Presentation

Presentation

- Many discovered incidentally
- Symptoms due to:
 - Local tumour mass
 - Tumor-engendered fibrosis
 - Carcinoid Syndrome:
 - Secretion of biologically active amines and peptides
 - Carcinoid crisis
 - Carcinoid heart disease

Disease	Hormone/	Syndrome	Management
	peptide		
Carcinoid	Serotonin, 5HIAA, CgA,	Flushing, diarrhea, asthma, valvular disease	Octreotide
Insulinoma	Insulin, C-peptide, proinsulin	Hypoglycemia	Diet, diazoxide, ?octreotide, steroid, glucagon drip
Glucagonoma	Glucagon	DM, migratory necrolytic erythema, thrombosis	Octreotide, ?perioperative anticoagulation, zinc
VIPoma	VIP	WDHA (watery diarrhea, hypokalemia, achlorhydria)	Octreotide
Gastrinoma	Gastrin	Diarrhea, peptic ulcer, reflux	PPI, octreotide

Carcinoid Crisis

- Life-threatening
- Spontaneously or precipitated by anesthesia, chemotherapy, infection or embolization procedures
- Severe flushing, diarrhea, hypo/hyper tension, tachycardia
- Immediate therapy iv octreotide
- Close monitoring before, during, and after surgical treatment

Carcinoid Heart Disease

- 40% metastatic carcinoid tumors usually with liver metastases
- Pathology:
 - Thickening of right heart valves: fibrotic plaques
 - Valve insufficiency, RHF

Carcinoid Heart Disease: Mechanisms

- Serotonin plays important role
 - Serotonin receptors subtype 1B present in subendocardial cells
 - Significant correlation between carcinoid heart disease and urinary 5-HIAA

- 1. Presentation
- 2. Diagnostic Work up and Follow

Work Up

- Biopsy
- Pathology: Ki 67 < or > 10 %
- CT/ MRI/ Ultrasound
- Octreotide and MIBG Nuclear Scans
- 24 hour urine 5HIAA
- Serum Chromogranin A
- PET (Europe)

Nuclear Peptide Scans

- Both MIBG and somatostatin receptors are on carcinoid tumors and overexpressed
- Diagnostic Studies
- Indium 131 or I123 MIBG: sens 50%
- Indium 111 Octreotide sens 80%

Diagnosis: Biochemical markers

- 5-HIAA Urine
 - Normal 3-15 mg/24 h urine
 - Baseline and 3- to 4-month in first year
 - Repeat if:
 - Disease progression is found
 - Change in therapy is being considered
- CgA Serum
 - Measure every 3 months in first year, then as per disease progresses

PET

- FDG-PET helpful in localizing high grade neuroendocrine but not low grade
- 18F-DOPA PET better but less available
- Swiss : 11C-5HTP (5-hydroxytryptophan) for PET 5HTP precursor in seritonin
- 90% localized but 20 min half life

PET with 11C-5-hydroxytryptophan showing insulinoma in head of pancreas

- 1. Presentation
- 2. Diagnostic Work up and Follow
- 3. Role of Surgery

Definition of the Problem

- 75% will develop liver metastases
- 80% with liver mets will die < 5 years
- Progressive liver mets leading cause of mortality (replaced hormone excess)
- Surgery :
 - Local tumor obstruction, bleeding, perforation
 - Symptoms from fibrosis

Controversial

- Role of extended, radical or en bloc resection of the primary tumor
- Role of metastatic resections?
 - Morbitity and mortality?
 - Symptom control?
 - Survival benefit

Aggressive Resections

- Norton et al. 2003: 20 patients with advanced WDET
 - 15/20 (75%) underwent complete resections
 - Pancreaticoduodencectomy -8
 - Superior mesenteric vein resection/reconstruction 3
 - Splenectomy 11
 - Nephrectomy 2
 - Liver resections 6
- Morbidity = 30%
- Mortality = 0
- Actuarial 5 yr-survival = 80%
- Disease free-survival: all recurred by 7 years

•	Author/Institution	Year	Patients Operativ	ve Mortality(%)
	Que/Mayo	1995	74	3
	Doussett/Paris	1996	17	6
	Chen/Hopkins	1998	15	0
	Chamberlain/MSKCC	1999	34	6
	Yao/Northwestern	2001	16	0
	Elias/Institut Gustave	2002	47	5
	Sarmiento/Mayo	2003	170	1.2

┍	Author/Institution	Year		Patients	s Sympton Control(%)
•	Que/Mayo	1995	74		90
•	Doussett/Paris	1996	17		88
ŀ	Chen/Hopkins	1998	15		
ŀ	Chamberlain/MSKCC	1999	34		90
ŀ	Yao/Northwestern	2001	16		71
ŀ	Elias/Institut Gustave	2002	47		
ŀ	Sarmiento/Mayo	2003	170		96

_				
•	Author/Institution	Year	Patient	s Survival(%)
•	Que/Mayo	1995	74	73% at 4y
•	Doussett/Paris	1996	17	46% a t4y
•	Chen/Hopkins	1998	15	73% at 5y
•	Chamnberlain/MSKC	C1999	34	76% at 5y
•	Yao/Northwestern	2001	16	70% at 5y
•	Elias/Institut Gustave	2002	47	71% at 5y
•	Sarmiento/Mayo	2003	170	61% at 5y

		RR	Dur
Moertel et al, 1994	n=111		
Embolization		60%	4 mo
Chemoembolization (Doxo, DTIC, STZ, 5FU)		80%	18 mo
Eriksson B et al, 1998	n=29		
Embolization		38%	7 mo
Kim YH et al, 1999	n=30		
Chemoembolization		37%	24 mo
Diamandidou et al, 1998	n=20	78%	
Chemoembolization			

Radiofrequency Ablation: Results

Percutaneous: 43 neuroendocrine metastases in 21 pts

- 2 complications
- 5% recurrence at 6 months
- 4/15 had no residual tumor
 - w Heimarera, Mondo bag 2002,20110.
- Laparoscopic RF: 34 neuroendocrine metastases
 - 80% had decreased symptoms
 - 65% decreased hormonal/tumor markers
 - 28% developed new lesions
 - 41% stable disease
 » Berber et al World J Sung 2002;26:385-90

Liver transplantation in malignant neuroendocrine tumors

(Lehnert T. Transplantation 1998;66:1307)

Total no. of patients	103
EPT	48
Carcinoids	43
2-year survival	60%
5-year survival	47%
Recurrent free survival	24%

Surgical Conclusions

- Aggressive resections can be done, acceptable morbidity and mortality
- Improved symptom control and extended survival likely
- Patients to benefit the most are those rendered disease free
- · Precise patient selection and disease extent
- Ultimate disease recurrent and progression likely
- An initial period of medical therapy is often recommended to allow time for observation and make surgery or ablation safer

Outline

- 1. Presentation
- 2. Diagnostic Work up and Follow
- 3. Role of Surgery
- 4. Role of Peptide Receptor Radionuclide Therapy

- RR 10-40% Survival Benefit?
- Considered Investigational

Tumor targeted irradiation in neuroendocrine tumors

^{⊪I} nd-DTPA Total dose	-octreotide 20 Gbq	n=38	(Krenning et al, 1999)
	Radiological res	ponse	30%
	Disease stabiliza	ation	40%
90Y-DOTAT	oc	n=22	(Valkemaa et al, 2000)
Phase I	Radiological res	ponse	10%
	Disease stabiliza	ation	45%
90Y-DOTAT	OC (6000 MBq/d)) n=41	(Waldherr et al, 2001)
	CR+PR		24%
	MR+SD		61%

[¹⁷⁷Lu-DOTA⁰,Tyr³]Octreotate Therapy in GEP Tumors: AntiTumor Effects 3 months follow-up

Progressive at baseline	PR/CR/MR	SD	PD	Total
Yes	55 47%	30 26%	32 27%	117
No	30 40%	33 45%	11 15%	74
Unknown	40 44%	37 41%	14 15%	91
Total	125 44%	100 36%	57 20%	282

Outline

- 1. Presentation
- 2. Diagnostic Work up and Follow
- 3. Role of Surgery
- 4. Role of Peptide Receptor Radionuclide Therapy
- 5. Role of Biologics and Sandostatin Analogs (SSA)

Biologics: Interferon

- Biochemical response in 40%
- Tumor response seen in <10%
- Side effects: fever, fatigue, anorexia, weight loss, alopecia, myelosuppression, liver dysfunction, clinical depression
- Used in Europe not North America

Somatostatin Analogs: SSA

- Somatostatin analogs bind to somatostatin receptors
- Biochemical responses > 70%
- Objective response < 5 %
- No survival benefit ? Cytostatic
- ? Super high doses

Sandostatin BCCA 2007

- Symptomatic, 5HIAA high: Approved
- Symptomatic, 5HIAA low: Approved
- No symptomatic, 5HIAA high: Approved
 - Goal: prevent carcinoid heart
- No symptomatic, 5HIAA low: Not Approved
 - Goal: Improve survival
 - Controversial not proven

Somatostatin Analogs

- Start with Octreotide 100 ug sc tid for 4 weeks
- At two weeks over lap with Sandostatin LAR at 20 mg q 4 weeks
- Increase at 10 mg increments q3-4 weeks if symptoms not improving or 5 HIAA not dropping

Outline

- 1. Presentation
- 2. Diagnostic Work up and Follow
- 3. Role of Surgery
- 4. Role of Biologics and Sandostatin
- 5. Systemic Treatment
 - Chemotherapy and Novel Therapy

Cytotoxic therapy in carcinoids

Drug	Dose, regimen	Pts	OR(%)	Median duration (mo)
Single agents:				
Doxorubicin (DOX) 5-FU Streptozotocin (STZ) Dacarbacine (DTIC) Cisplatin45-90 mg/ m²/ Combinations: Streptozotocin + 5-FU Streptozotocin + toxorubicin Streptozotocin + Cyclophosphamide	60 mg/m ² q 3-4 w 500 m/m ² /d x 5 d q 5 w 500-1500 mg/m ² /d x 5 d q 3-5 w 250 mg/m ² /d x 5 d q 4-5 w q 3-4 w16 STZ 500 mg/m ² /d x 5 q 3-6 w 5-FU 400 mg/m ² /d x 5 q 3-6 w 5-FU 400 mg/m ² /d x 5 q 3-6 w 5-FU 400 mg/m ² /w for 4 w DOX 25 mg/m ² /w then q 2 w STZ 500 mg/m ² /d q 6 w CTX 100 mg/m ² /d q 6 w	81 30 14 15 6 175 10 24	21 17-26 0-17 13 4.5 7-33 40 39	6 3 2 4.5 3-7 5 6.5
(CTX) Etoposide + Cisplatin	Etop 130 mg/ m²/d x 3 d Cispl 45 mg/ m²/d d 2 and 3 cycle q 4 w	13	0	

Carcinoid: Chemotherapy

· Chemotherapy

- E1281 (JCO 2005)
- 5FU/doxorubicin
 - PFS = 4.5 months, OS = 15.7 months
- -5FU/streptozocin
 - PFS = 5.3 months, OS = 24.3 months

BCCA

• ENDO 1:

- Streptozotocin/ Adriamycin
- Streptozotocin/ 5 FU
- ENDO 2:
 - Carmustine/ 5 FU

New Drugs

mTOR

mTOR (mammalian target of rapamycin) is an intracellular protein (enzyme) that acts as a central regulator for cell growth, transcription, proliferation, and angiogenesis in cancer

RAD001 Single Agent Activity in NET ASCO 2006: Dr J. Yao, MD Anderson (IIT)

- 17 patients with disease progression at study entry
 - 3 PR, 10 SD, 4 PD with RAD001 5 mg/d (10 mg/d ongoing)
 - 11 (65%) progression-free at 6 mos

Phase II RADIANT 1Study in Advanced Pancreatic Islet Cell after Chemotherapy Failure, started in 2006 Ph III in 2007, post-interim analysis of RADIANT 1

Phase II Trial in Neuroendocrine Tumors: Individual Patient Data (Yao ASCO 2006)

Increased VEGF expression is associated with poor prognosis in neuroendocrine tumors

Bevacizumab (BV; rhuMAb VEGF)

- Recombinant humanized
 anti-VEGF MAb
- Binds and neutralizes all forms of VEGF A
- T_{1/2} 17-21 days

Avastin[™] (bevacizumab) [package insert]. San Francisco, Calif: Genentech, Inc; 2004.

